

Flammable Gas Sensor

(Model: MQ-D5B)

Manual

Version: 1.5

Valid from: 2021-07-17

Taiyuan Tengxing sensor technology Co., Ltd

Statement

- 1. The copyright of instructions belong to Taiyuan Tengxing sensor technology Co., Ltd (hereinafter referred to as the Company), nobody is allowed to copy, translate, spread or store without written approval.
- 2. Thanks for using our product. In order to use the products more smoothly, reduce faults result from inappropriate using, please read the instructions carefully before using and follow the rules suggested strictly. Anyone who don 't follow the instructions, disassemble or change the internal components without permission will afford the loss.
- 3. The color, style and size of the product is subject to the object you received.
- 4. The company follows the idea of scientific and technological progress, make efforts to productimproving and technology-innovating. So we have the right to improve product without prior notice.
- 5. Please make sure it 's valid before using the instructions. Any good suggestions from you is welcomed.
- 6. The instructions should be well kept.

MO-D5B Flammable Gas Sensor

Profile

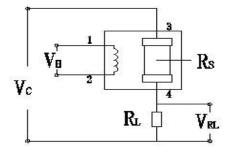
MQ-D5B gas sensor is for flammable gases. It adopts multilayer thick film manufacturing technology. The hea ter and metal oxide semiconductor material on the ceramic substrate of Al_2O_3 are fetched out by electrode down-lead, encapsulated in metal socket and cap. Conductivity of the sensor is affected by the concentration of target gas. The higher the concentration is, the higher conductivity of sensor gets. Users can adopt simple circuit to convert variation of conductivity into output signal corresponding to gas concentration.

Features:

- Lower consumption
- * Small size
- * Fast response and resume
- * Highest sensitivity
- * Excellent stability and long life
- * Easy circuit and big signal output
- * Excellent selectivity

Application

It is widely used in domestic gas leakage alarm, industrial flammable gas alarm and portable gas detector.


Technical Parameters

Model			MQ-D5B
Sensor Type			Flat surfaced semiconductor sensor
Standard Encapsulation			Metal cap
Target Gas			LPG
Detection range			300-10000ppm LPG
Standard Circuit Conditions	Loop Voltage	Vc	≤24V DC
	Heater Voltage	V _H	5V±0.1V AC or DC
	Load Resistance	R _L	Adjustable
	Heater Resistance	R _H	85Ω±15Ω (room temp.)
Sensor character	Heater consumption	P _H	≤300mW
under standard	Sensitivity	S	Ro(in air)/Rs(2000ppm C ₃ H ₈)≥5
test conditions	Sensitive resistance	Rs	1K Ω \sim 20K Ω (in 2000ppm C $_3$ H $_8$)
	Concentration Slope	α	≤0.6(R _{2000ppm} /R _{500ppm} C ₃ H ₈)
	Tem. Humidity		20℃±2℃; 65%±5%RH
	Standard test circuit		Vc:5V±0.1V; V _H : 5V±0.1V
Standard test Preheat time		Not less than 48 hours	
conditions			21% (not less than 18%)
	O2 content		O2 concentration effects initial value,
			sensitivity and repeatability.
Lifespan			10 years

Fig1. Sensor structure

Basic circuit

Instructions: The above fig is the basic test circuit of MQ-D5B. The sensor requires two voltage inputs: he ater voltage (V_H) and circuit voltage (V_C). V_H is used to supply standard working temperature to the sensor a nd it can adopt DC or AC power, while V_{RL} is the voltage of load resistance R_L which is in series with sens or. Vc supplies the detect voltage to load resistance R_L and it should adopt DC power.

Description of Sensor Characters

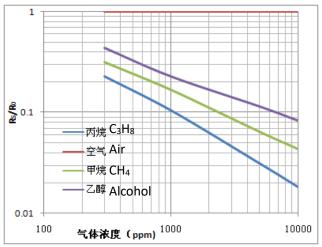


Fig3.Typical Sensitivity Curve

The ordinate is resistance ratio of the sensor (Rs/R_0), the abscissa is concentration of gases. Rs means resistance in target gas with different concentration, R_0 means resistance of sensor in clean air. All tests are finished under standard test conditions.

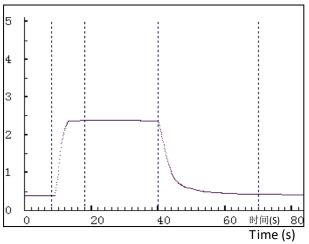


Fig5.Response and Resume



Fig4.Typical temperature/humidity characteristics

The ordinate is resistance ratio of the sensor (Rs/Rso).Rs means resistance of sensor in 2000ppm propane (C_3H_8) under different tem. and humidity. Rso means resistance of the sensor in 2000ppm propane (C_3H_8) under 20°C/65%RH.

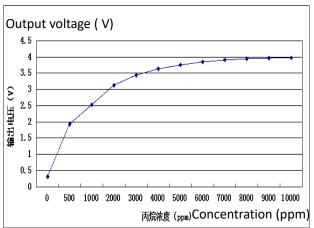
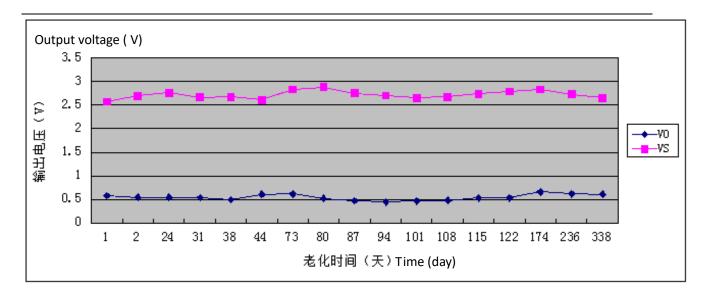



Fig6.Linearity curve

Long-term Stability

Test is finished in standard test conditions, the abscissa is observing time and the ordinate is V_{RL}.

Cautions

1 .Following conditions must be prohibited

1.1 Exposed to volatilizable organic silicon steam

Sensing material will lose sensitivity and never recover if the sensor absorbs organic silicon steam. Sensors must be avoided exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment.

1.2 High Corrosive gas

If the sensors are exposed to high concentration corrosive gas (such as H₂S, SO_X, Cl₂, HCl etc.), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.3 Alkali, Alkali metals salt, halogen pollution

The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorine.

1.4 Touch water

Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing

Do avoid icing on sensor's surface, otherwise sensing material will be broken and lost sensitivity.

1.6 Applied higher voltage

Applied voltage on sensor should not be higher than stipulated value, even if the sensor is not physically damaged or broken, it causes down-line or heater damaged, and bring on sensors' sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

As Fig8. Pin 1&2 connects to heater circuit, Pin 3&4 connects to measuring circuit; Under the requested conditions, heating and measuring can use the same power circuit.

NOTE: the two pins near the protuberance mark is heating electrode.

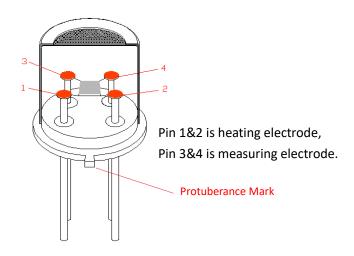


Fig8.Pin Schematic Diagram

2 .Following conditions should be avoided

2.1 Water Condensation

Indoor conditions, slight water condensation will influence sensors' performance lightly. However, if water condensation on sensors surface and keep a certain period, sensors' sensitive will be decreased.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if it is placed in high gas concentration for long time, sensors characteristic will be affected. If lighter gas sprays the sensor, it will cause extremely damage.

2.3 Long time storage

The sensors resistance will drift reversibly if it's stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof bag without volatile silicon compound. For the sensors with long time storage but no electrify, they need long galvanical aging time for stability before using. The suggested aging time as follow:

Storage Time

Less than one month

Not less than 48 hours

1 ~ 6 months

Not less than 72 hours

More than six months

Not less than 168 hours

Stable2.

2.4 Long time exposed to adverse environment

No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc., it will influence the sensors' performance badly.

2.5 Vibration

Continual vibration will result in sensors down-lead response then break. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage Conditions

2.7.1For sensor, handmade welding is optimal way. The welding conditions as follow:

• Soldering flux: Rosin soldering flux contains least chlorine

● homothermal soldering iron ● Temperature: $\leq 350^{\circ}$ C ● Time: less than 3 seconds

If disobey the above using terms, sensors sensitivity will be reduced.