

Alcohol Module

User's Manual V1.1

(Model No.: TE31-C2H5OH)

Valid from: 2019-01-28

Taiyuan Tengxing sensor technology Co., Ltd

Statement

- 1. The copyright of instructions belong to Taiyuan Tengxing sensor technology Co., Ltd(hereinafter referred to as the Company), nobody is allowed to copy, translate, spread or store without written approval.
- 2. Thanks for using our product. In order to use the products more smoothly, reduce faults result from inappropriate using, please read the instructions carefully before using and follow the rules suggested strictly. Anyone who don 't follow the instructions, disassemble or change the internal components without permission will afford the loss.
- 3. The color, style and size of the product is subject to the object you received.
- 4. The company follows the idea of scientific and technological progress, make efforts to product-improving and technology-innovating. So we have the right to improve product without prior notice.
- 5. Please make sure it 's valid before using the instructions. Any good suggestions from you is welcomed.
- 6. The instructions should be well kept.

Taiyuan Tengxing sensor technology Co., Ltd

Electrochemical Alcohol Module TE31-C2H5OH

Profile

The TE31-C2H5OH electrochemical alcohol module is a general-purpose, miniaturized module. The electrochemical principle is used to detect the presence of C2H5OH in the air, which has good selectivity and stability. Built-in temperature sensor for temperature compensation; digital output and analog voltage output for easy use. ZE31-C2H5OH is a universal gas module designed and manufactured by combining proven electrochemical detection technology with sophisticated circuit design.

Features

High sensitivity, high resolution, low power consumption, long lifespan UART and analog voltage output

Good stability and excellent anti-interference, temperature compensation, good linearity.

Main Application

Alcohol detector, vehicle-mounted detector

Technical Parameters table1.

Model No.	TE31-C2H5OH			
Target Gas	Alcohol			
Interference gases	CO &etc gas			
Output Data	UART Output (3V electrical level)			
Working Voltage	3.7~5.5V			
Preheating time	≤3 min			
Response time	≤60 sec			
Recovery time	≤60 sec			
Detection Range	0~5 ppm			
Resolution	≤0.01ppm			
	Temp.: -20~50℃			
Operating Environment	Humidity.: 15%-90%RH(no			
	condensation)			
Storage Temp.	0~25℃			
Working Life	2 years (in air)			

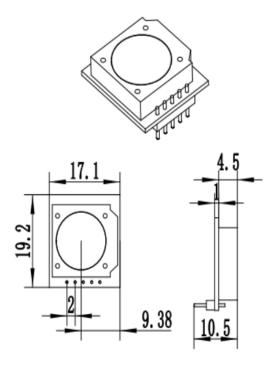


Fig1. Structure(tolerance \pm 0.2mm)

Pin Description table2.

PIN1	Vin(Power input 3.7V~5.5V)
PIN2	UART (TXD) 0~3V data output
PIN3	UART (RXD) 0~3V data input
PIN4	GND
PIN5	Reserved

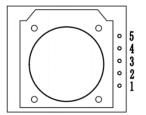


Fig2. Pins construction

Communication Protocol

1. General Settings

Table 3

Baud Rate	9600
Data Byte	8 bytes
Stop Byte	1 byte
Check Byte	Null

2. Communication Commands

There are two kinds of communication mode: initiative upload mode and question & answer (Q&A) mode. We take initiative upload mode as the default settings.

If users want to switch back to initiative upload mode in Q&A mode, send the following command: Table4.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte6	Byte 7	Byte 8
Start Byte	Reserve	Switch command	Initiative upload mode	Reserve	Reserve	Reserve	Reserve	Check sum
0xFF	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

The module sends the gas concentration value every 1s in initiative upload mode: Table 5

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte6	Byte 7	Byte 8
Start	Gas Type	Unit	No. of	Concentration	Concentration	Full Range	Full Range	Check sum
Byte	(C2H5OH)	(ppb)	decimal	(High Byte)	(Low Byte)	(High Byte)	(Low Byte)	CHECK SUIII
0xFF	0x17	0x04	0x00	0x00	0x25	0x13	0x88	0x25

Gas concentration value ppb = High Byte*256+Low Byte, ppm=ppb/1000

Please note that in the above calculation formula, the byte4 and byte5 means the decimalism value changed from hexadecimal.

Switch to the question & answer (Q&A) mode, send the following command line format: Table 6

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte6	Byte 7	Byte 8
Start Byte	Reserve	Switch command	Q&A mode	Reserve	Reserve	Reserve	Reserve	Check sum
0xFF	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

To read concentration in Q&A mode, the command line format is as follows: Table 7

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte6	Byte 7	Byte 8
Start Byte	Reserve	Command	Reserve	Reserve	Reserve	Reserve	Reserve	Check sum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

Return the concentration as follow: Table 8

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte6	Byte 7	Byte 8
Start		Reserve	Reserve	Reserve	Reserve	Concentration	Concentration	Check
Byte	Command	Reserve	Reserve	Reserve	Reserve	(High Byte)ppb	(Low Byte)ppb	sum
0xFF	0x86	0x00	0x00	0x00	0x00	0x00	0x20	0x5A

Gas concentration value = High Byte*256+Low Byte

Please note that in the above calculation formula, the High byte and Low byte means the decimalism value changed from hexadecimal.

3. Checksum and calculation

```
unsigned char FucCheckSum(unsigned char *i,unsigned char In)
{
unsigned char j,tempq=0;
i+=1;
for(j=0;j<(In-2);j++)
{
tempq+=*i;
i++;
}
tempq=(~tempq)+1;
return(tempq);
}</pre>
```

Cross interference gas

Gas	Concentration/ppm	Equal to C2H5OH
С6Н6	10	0.1
С7Н8	10	0.46
СНЗСООН	200	0.52
H2S	50	3
СО	200	0.64

Cautions

- 1. The module avoids contact with organic solvents (including silica gel and other adhesives), paints, chemicals, oils and high-concentration gases.
- 2. The module can not be completely encapsulated with resin material, nor can it be immersed in an oxygen-free environment, otherwise it will damage the performance of the sensor;
- 3. The module can not be used for long time in the environment containing corrosive gases, corrosive gases will damage the sensor;
- 4. The module cannot withstand excessive impact or vibration.
- 5. The module needs to be preheated for 24-48 hours when it is first powered on, so that the module can be fully stabilized and then tested normally.
- 6. Do not apply the module to systems that involve personal safety.
- 7. Do not install the module in a strong convection air environment.
- 8. Do not place the module in a high concentration of organic gas for a long time. If it is placed for a long time, the sensor zero point will drift and the recovery will be slow.
- 9. It is forbidden to use hot melt adhesive or sealant package module with curing temperature higher than 80 °C;
- 10. It is forbidden to store and use in high concentration alkaline gas for a long time.